山形県のサトイモ生産と流通を改善し、「サトイモで儲かる農業」を実現するための研究

山形県立村山産業高等学校 農業科学部サトイモ・芋煮研究班

山形県には、サトイモを主材料にした「芋煮」という郷土料理がある。山形県民のサトイモ消費量は多く、全国 1位(総務省統計、山形市)となっているが、山形県のサトイモ生産量は ・ェアの1%程度であり、県内の需要にも足りていない。 さらに、山形産サトイモは非常 に安価で流通するとともに、1ha あたりの生産量は、全国平均以下であり、農業者もメリッ トが少ないと言われている。そこで、私たちは、サトイモ生産の課題を以下の通りに設定し 生産に関わるコストを削減し、生産効率を上げることを目標に研究を行った。 生産に関わるコストを削減し、

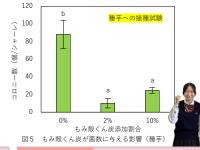
課題1:種芋の保存時に乾腐病菌がまん延することで腐敗が発生する。

課題2:物価高の影響により、 育苗時の培養土などの諸材料費が高騰している 課題3:適正な化学肥料の施肥量が明らかではなく、環境対策などが明らかではない。 課題4:収穫後のサトイモ表面に微生物汚染が発生し、品質の低下を招いている。

サトイモ生産に関する研究の流れ

もみ殻くん炭を活用して種芋の腐敗を防ぐ! 種芋生産

サトイモ栽培において、種芋の保存は経験則で行われており、多くが損失し、 他地域より購入することになっているのが現状である(独自調査)。その要因 として、乾腐病が種芋を原因にまん延することがある(長井1982、 西村1990)。 炭資源は、炭化した微生物汚染の少ない資材であり、種芋の保存に用いること が可能かどうか検証した。


供試材料:サトイモ種芋(本校で生産、Mサイズ)

供試菌株:乾腐病 (Fusarium proliferatum 本校で単離・同定)

接種源濃度0.0663 g/10ml(乾燥状態)

実験材料:もみ殻くん炭・木炭・竹炭(本校の素材から自家生産)

測定項目:コロニー数(希釈平板法10万倍希釈)

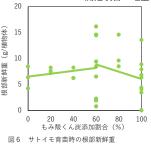
山形県におけるサトイモ生産の現状

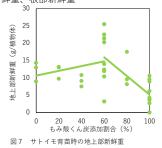
炭資材の中で、もみ殻くん炭を用い ることで乾腐病菌を最も抑制するこ ン が できた

派養者に強けるために

流通

もみ殻くん炭は6%までは、菌数を 低下させるが、それ以上は増加する。 添加による生育抑制もあるがリバウ ンド?


種茎への直接接種では、 もみ殻くん 炭の添加による菌数の低下がみられ リバウンドの超こうあ た。しかし、 今後、追試験を行う予定。

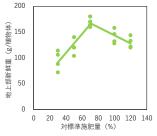

もみ殻くん炭を使って育苗コスト削減! 育苗

資材価格の高騰が続いている。もみ殻くん炭は自家生産が 可能であり、二酸化炭素を貯留するバイオ炭としても注目 されている。稲作において、もみ殻くん炭を育苗用土に混 合して用いる事例が報告されている(木下1977、中谷 1979)。サトイモにおいても培養土の使用頻度を下げるた めに効果的かどうかを検証した。

: もみ殼くん炭混合割合0~100% 実験区 測定項目:地上部新鮮重、 根部新鮮重

もみ殼くん炭が増加することで、60%添加までは生育が増加する傾向を示した。しかし、 それ以上は生育を低下させた。添加割合によっては、排水・通気性の向上や病害の抑制な どの良い効果がある。大量では、pHの上昇や養分の吸着などの問題が発生するかも?

減化学肥料でコスト削減と環境対応! 栽培


化学肥料の使用はコスト高と環境負荷が発生する。標準施 肥量は十分な検討がないことが多い。そこで、適正な施肥 量を検討し、化学肥料の削減を目指した

: 低施肥区 (30%、50%、70%) 実験区

標準施肥区 (100%) 、高施肥区 (120%)

栽培条件:ポット条件(約10L)

測定項目:地上部新鮮重、SPAD値(光合成量) 80

標準的な栽培

煙準的か栽培

(万円/10ha)

1.8

16.4

9.1 本研究に基づくサトイモ栽培における経営収支

10aあたり14万円の削減を可能とした。

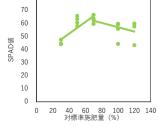


図8 各肥料段階による地上部新鮮重 図9 各肥料段階によるSPAD値

本研究に基づく

太研究に其づく

栽培(万円/10ha)

1.6

10.8

本研究の成果として、もみ殻くん炭の活用による種苗費・諸

微生物汚染の防止と品質の向上などにより、農業経営費で

たサトイモの生産と出荷にこの成果を活用して、サトイモの

地上部新鮮重とSPAD値のどちらとも低施肥区70%区が生育最大となった。標準施肥以上では、有意に生育が低下した。SPAD値も低下しており、光合成の能力も低下している。過剰 害の発生?今後、野外条件で収穫期までを追跡する試験を実施予定。

まとめ

増減

204

50

増減 5

-0.7

14.1

30

25

20

15

9.1

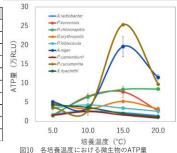
標準的な栽培

10a)

所得 10

丰 5

流通 微生物汚染を抑えてサトイモを高く売る

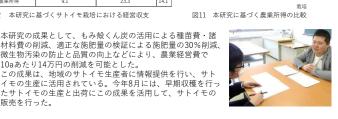

サトイモの流通段階にイモ表面に白色や黒色のカビが発生し それを防止するために農家によって過度な乾燥が行われ、品 質低下を招いている。そこで、微生物汚染の原因を解明した。 スーパーY、スーパーT、産直施設Sより採取

希釈平板法により、表面微生物を採取 MALDIバイオタイパーにより同定

測定項目 ATP量、微生物種の同定

同定した微生物名	分類・特徴
Agrobacterium radiobacter	土壌微生物の一種
Aspergillus niger	黒色の胞子が発生
Enterobacter bugandensis	大腸菌群。食品汚染微生物
Herbaspirillum aquaticum	植物に付着する微生物
Penicillium camemberti	白色の菌糸・胞子。食品汚染も
Plectosphaerella cucumerina	植物病原菌の一種。白色の菌糸
Pseudomonas chlororaphis	土壌微生物の一種
Pseudomonas koreensis	土壌微生物の一種
Rhodococcus erythropolis	放線菌の一種
Xanthomonas hyacinthi	植物病原菌の一種

同定した微生物種とその分類・特徴



15°Cで急激にATP量が増加したA.nigerは黒色の胞子を形成し、P.cucumerinaは、白色の 菌糸を形成する種である。15°Cはサトイモを収穫する秋シーズンの温度であり、原因菌

温度を10°Cに低下させることで、単離した微生物のすべてが生育を低下させる傾向にあ この温度を保存時の最高温度として設定するべきである。

の可能性が高い。

- 山形県工業技術センター 日本一の芋煮会フェスティバル実行委員会
- 道の駅むらやま - 計画

23.3

本研究に基づく

本研究の連携先

販売を行った。

項目

10a収量 (kg)

販売単価 (円/kg

農業和収益

種苗・苗木

農業雑支出

典業所得

肥料

踏材料

费 農業経営費小計

- やまがた農業女子ネットワークの皆さん さとう農園 佐藤氏 サトイモ生産者 村岡氏、笠原氏、早川氏